PEAK GROUND ACCELERATION AT SURFACE FOR MATARAM CITY WITH A RETURN PERIOD OF 2500 YEARS USING PROBABILISTIC METHOD
Rian Mahendra Taruna, Vrieslend Haris Banyunegoro, Gatut Daniarsyad

4th International Conference on Rehabilitation and Maintenance in Civil Engineering
Solo, 12 Juli 2018
INTRODUCTION

- West Nusa Tenggara is an area that is prone to earthquakes because it is flanked by two earthquake sources, subduction zone and Back Arc Thrust zone.

- According to the Mataram Geophysics Station data, the 6.2 SR earthquake on June 6, 2016 has caused damage in Mataram and Central Lombok. Even in 2017 there have been 9 earthquakes felt with scale II-III MMI in Mataram City.

SEISMIC HAZARD ANALYSIS

Peak Ground Acceleration & Spectrum Acceleration
at surface
DATA

- Earthquake Data (1960-2017)
 - Engdahl
 - BMKG

- Source Parameter
 - Peta Sumber dan Bahaya Gempa 2017
 - USGS

- Vs30
 - Marjiyono (2016)
FLOWCHART

Start

Collecting earthquake data:
- Sources: catalogs of Engdahl and BMKG
- Start from 1960 to 2017

Declustering earthquake data

Uniforming magnitude to M_w

Compiling and calculating source parameter

Determining logic tree

Probabilistic Seismic Hazard Analysis

PGA and spectral acceleration at bedrock for $T=0.2$ s & $T=1.0$ s

PGA and spectral acceleration at surface for $T=0.2$ s & $T=1.0$ s

Design spectrum response

End

Collecting V_s30 data:
Sources: USGS and Marjiana (2016)

Site Classification
(SNI 1726:2012)

Amplification factors
SOURCE PARAMETER

<table>
<thead>
<tr>
<th>No.</th>
<th>ID</th>
<th>Name-segment</th>
<th>Dip</th>
<th>Length</th>
<th>Slip rate (mm/yr)</th>
<th>Top</th>
<th>Bottom</th>
<th>Mmax</th>
<th>Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19</td>
<td>Flores Backarc Thrust-Lombok</td>
<td>45</td>
<td>310</td>
<td>9.9</td>
<td>3</td>
<td>18</td>
<td>8.0</td>
<td>18.5</td>
</tr>
<tr>
<td>2</td>
<td>27</td>
<td>Nusa Tenggara oceanic normal fault</td>
<td>60</td>
<td>540</td>
<td>0.5</td>
<td>3</td>
<td>18</td>
<td>7.8</td>
<td>17.9</td>
</tr>
<tr>
<td>3</td>
<td>84</td>
<td>Sumbawa strait strikeslip fault-north</td>
<td>90</td>
<td>79</td>
<td>0.5</td>
<td>3</td>
<td>18</td>
<td>7.3</td>
<td>11.9</td>
</tr>
<tr>
<td>4</td>
<td>85</td>
<td>Sumbawa strait strikeslip fault-central</td>
<td>90</td>
<td>104</td>
<td>0.5</td>
<td>3</td>
<td>18</td>
<td>7.4</td>
<td>12.1</td>
</tr>
<tr>
<td>5</td>
<td>86</td>
<td>Sumbawa strait strikeslip fault-south 1</td>
<td>90</td>
<td>40</td>
<td>0.5</td>
<td>3</td>
<td>18</td>
<td>6.9</td>
<td>10.9</td>
</tr>
<tr>
<td>6</td>
<td>87</td>
<td>Sumbawa strait strikeslip fault-south 2</td>
<td>90</td>
<td>47</td>
<td>0.5</td>
<td>3</td>
<td>18</td>
<td>7.0</td>
<td>11.2</td>
</tr>
<tr>
<td>7</td>
<td>89</td>
<td>Lombok strait strikeslip fault-north</td>
<td>90</td>
<td>156</td>
<td>0.5</td>
<td>3</td>
<td>18</td>
<td>7.5</td>
<td>12.3</td>
</tr>
<tr>
<td>8</td>
<td>92</td>
<td>Lombok strait strikeslip fault-central</td>
<td>90</td>
<td>133</td>
<td>0.5</td>
<td>3</td>
<td>18</td>
<td>7.5</td>
<td>12.3</td>
</tr>
<tr>
<td>9</td>
<td>99</td>
<td>Java Megathrust-Bali</td>
<td>500</td>
<td>4.0</td>
<td></td>
<td>9.0</td>
<td>200</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **b value**: The magnitude completeness (M_c) is determined as 4.8
- **b value**: Estimated as $b = 0.944 \pm 0.044$, $a = 7.13$, a value (annual) = 5.38
- **Magnitude of Completeness**: $M_c = 4.8$
PGA & SPECTRAL ACCELERATION (BEDROCK)

Legend

PGA at bedrock (g)
- 0.171 - 0.175
- 0.175 - 0.179
- 0.179 - 0.183
- 0.183 - 0.187

T=0.2 s

PGA

T=1.0 s
SITE CLASSIFICATION

Legend
- BATAS_WILAYAH
- Site Classification
 - Kelas E
 - Kelas D
RESPONSE SPECTRUM

![Graph showing response spectrum for different site classes (D and E) with and without research data, comparing periods T (second).]
CONCLUSION

- **North area** of Mataram has **larger** PGA, Ss, and S1 value than southern Mataram which caused by dominance of **Back Arc Thrust** north of the city.

- **Ampenan Utara village** is area with **largest** PGAM, SMS, and SM1, which is mostly caused by how close it with **back arc thrust** and dominated with **E class soil**. While the **lowest** PGAM, SMS, and SM1 area is located at **Turida village** which relatively away from Back arc thrust and has **D class soil**.

- **Peak design respons spectrum** of Mataram for D class site is 0.42 g at 0.114-0.571 s, while for E class is 0.51 g at 0.15-0.75s. These values are really important in purpose to plan earthquake resistant building and risk category determination.
THANK YOU

RIAN MAHENDRA TARUNA

+62 81335556059

reemyan@gmail.com