

Department of Civil Engineering Faculty of Engineering Jenderal Soedirman University

Multisite daily precipitation simulation in Singapore

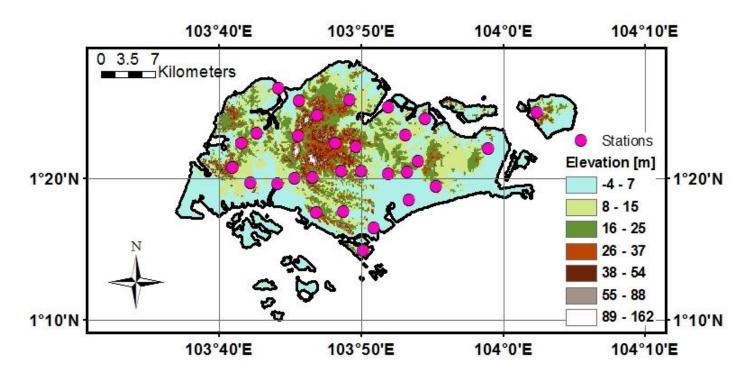
by Dr.-Ing. Suroso, ST., M.Sc

4th International Conference on Rehabilitation and Maintenance in Civil Engineering Best Western Premier Hotel, Solo Baru July,11-12 2018

- 1. Background, motivations, and research goals
- 2. Data and study locations
- 3. Methods
- 4. Results
- 5. Conclusions

Background and motivations

- Precipitation is the main input of hydrological analysis
- Lack of spatial and temporal observations
 - Spatial interpolations (coarse → finer resolution)
 - Infilling missing observations → extend length of series
- Exhibit unique behavior
 - zero inflated data and skewed distribution



- To develop daily precipitation models at multiple locations incorporating both temporal and spatial dependencies
- Zero-inflated data for dry days are treated as latent variables

Data and Study Location

- Area: 718.3 km²
- 26 rain gauge stations (1980-2010)
- Daily resolution

1. Temporal Model Development

- Single Site Model
- Power Transformed AR(1) Model

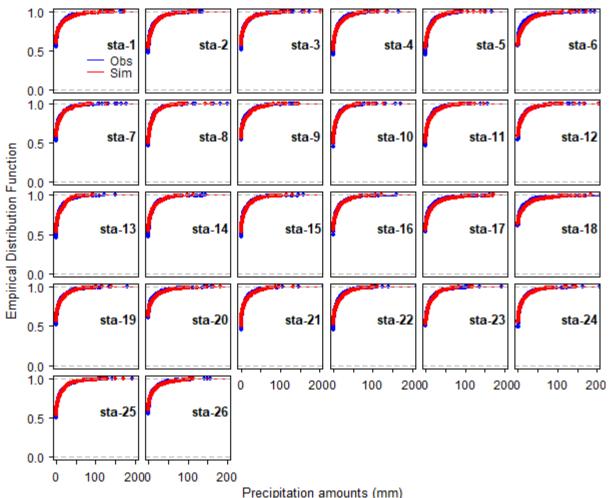
- Z_t: precipitation amounts in real domain
 - For $Z_t > 0 \rightarrow$ positively skewed
 - For $Z_t=0$ (dry days) \rightarrow censored data approach
- Y_t : beta power transformed normal domain on day t μ & r: AR(1) parameters
- ε_t: residual error of AR(1) process on day t (i.i.d)

2. Spatial Model Development

- Residual errors (ε_t) ≠ (i.i.d) → still correlated each others
- ɛt modelled spatially by Conditional Spatial Gaussian Model
- To fill in censored *et* coming from censored daily precipitation

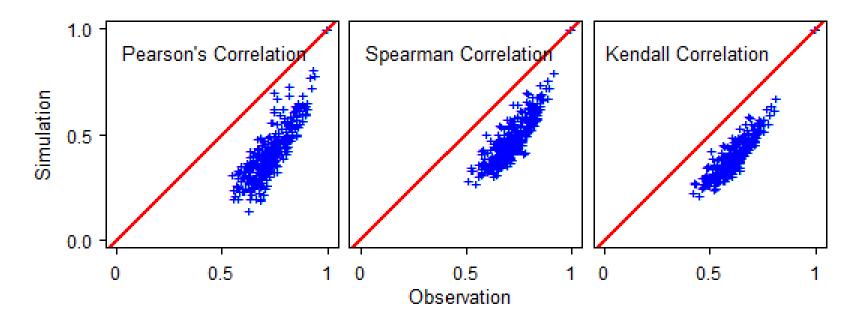
$$\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \sim N \begin{pmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}$$

- 3. Model Simulation
 - Generate errors *et* based on fitted Conditional Gaussian Model
 - Simulate daily precipitation Y_t using fitted AR(1) Model for each station.
 - If Y_t ≤ 0 → transformed back to zeroes Z_t=0 (dry days)
 - If Y_t > 0 → transformed to the skewed distribution (positive rainfall) using beta (β) power transformation

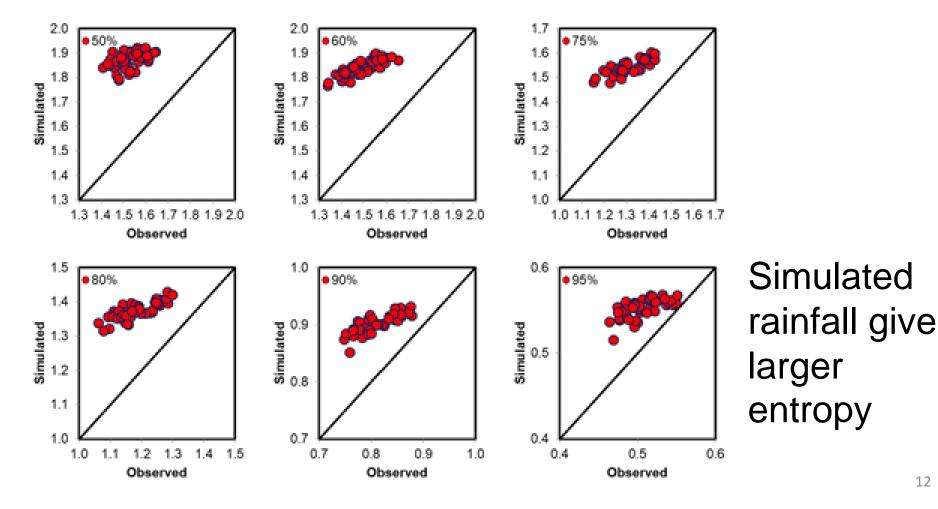

4. Model Evaluation

- <u>Conventional measures</u>: mean, variance, empirical cumulative distribution function, important quantiles values and cross correlation coefficient (CCC).
- Novelty measure: entropy-based approach (Bardossy and Pegram, 2009*) → to measure uncertainty information

* A. Bárdossy, GGS. Pegram. Copula-based multisite model for daily precipitation simulation. *Hydrology and Earth System Sciences* 13 (12), p. 2299, (2009)


1. Single Site Evaluation

Model reproduces simulated rainfall perfectly


2. CCC-based Evaluation

Simulated daily precipitation exhibits slightly lower CCCs compared to observed data.

3. Entropy-based measure

Conclusions

- 1. Model performs very well for single site evaluation (mean, variance, cumulative distribution function, and important quantiles)
- 2. There is only slight a difference value for all CCCs between simulated and observed daily precipitation.
- Simulated daily precipitation amounts give larger entropy than observed data → greater uncertainty

Thank You