Seismic performance of four-storey masonry infilled reinforced concrete frame building

By: Isyana Ratna Hapsari^{1,} *Senot* Sangadji², and *Stefanus Adi* Kristiawan²

Research Introduction

Masonry infilled wall

Generally modelled as an open frame

Omitting the strength and stiffness contribution of the infilled wall

Only gives a gravitational load effect to the structure

A realistic analysis of structure

Reliable seismic performance within an acceptable limit

A macro model of masonry infilled wall in the form of an equivalent diagonal compression strut

The seismic performance evaluation

The seismic performance is assessed on the basis of the fragility curve

The fragility curve provides complete information on the probabilities of various levels of building damage due to various seismic intensities

Open Frame Model

- a. The building is a four-storey structure (residential purpose)
- b. Classified to be the Mid Rise Irregular building group
- c. The infilled wall is considered only to cause a gravitational load to the beam below it
- d. The floor or rooftop load is calculated using tributary area method

Table of Element Classes and Dimension

Ele	ment Classes	Beam size (mm²)	Concrete compressive strength of beam (MPa)	Column size (mm²)	Concrete compressive strength of column (MPa)	Slab thicknes (mm)
a. 1,2,3 F	LOOR					
1.	Primary type 1	300 x 400	28	300 x 400	30	140
2.	Primary type 2	300 x 500	28			
3.	Primary type 3	300 x 300	25			
4.	Primary type 4	300 x 600	24			
5.	Primary type 5	250 x 400	28			
6.	Secondary type 1	200 x 300	26	150 x 150	30	
7.	Secondary type 2	300 x 400	24	150 x 300		
8.	Secondary type 3	150 x 300	26			
9.	Secondary type 4	150 x 250	28			
10.	Secondary type 5 (only 1st floor)	150 x 200	30			
b. ROOF						
11.	Primary type 1	200 x 300	26	300 x 400	30	120
12.	Primary type 2	300 x 400	28			
13.	Secondary type 1	200 x 300	26	150 x 150	30	
14.	Secondary type 2	150 x 250	28	150 x 300		
15.	Secondary type 3	150 x 300	26			

Open Frame Model

Infilled Frame Model

- a. The infilled wall contributes to the strength and stiffness of the frame structure
- b. A macro modelling of masonry infi lled as an equivalent diagonal co mpression strut

Infil 03 Geometrical Properties	led Frai Mod	me 01 del			
Infilled Panel Model Parameters	Unit	Used Value	Equation	Ref	-
a. Panel Thickness, t_w	mm	150			
b. Dimensionless relative stiffness, λ_h			$\lambda_{h} = h_{\sqrt{4}}^{4} \frac{E_{m} t_{w} \sin(2\theta)}{4 E_{c} I_{c} h_{w}} \qquad (4)$	[3]	
c. Width of strut, $b_{\scriptscriptstyle WI}$	mm	varies	$b_{se} = 0.175 (\lambda, h)^{-0.4} d_{se}$ (5)	[18, 19]	
d. Strut Area 1, Am ₁	mm ²	varies	$Am_I = bw_I \cdot t_{int}$ (6)		
e. Strut Area 2, Am2	%	70	$Am_2 = bw_{cracked}/bw_{uncracked}$ (7)	[3]	
f. Strut Area Reduction Strain, (ε_I)		0.0006		[20]	
g. Residual Strut Area Strain, (ε_2)		0.001		[20]	
h. Equivalent Contact Length, h _e	mm	0	Diagonal Single strut		
i. Horizontal Offsets, X ₈₆	%	varies	$xoi = \frac{0.5 \text{ column width}}{\text{width of infill panel}}$ (8)	[15]	
j. Vertical Offsets, <u>Vei</u>	%	varies	$yoi = \frac{0.5 \text{ beam depth}}{\text{height of infill panel}}$ (9)	[15]	

04

Infilled Panel Model Parameters	Unit	Used	Equation		Ref	Infilled Panel Model	Unit	Used	Equation	Ref
		Value	_			Parameters		Value		
a.Elastic Young's Modulus, <u>E</u> a	MPa	varies	$E_m = fm \theta / \varepsilon_m$	(1)		a. Starting Unloading		1.7		[15]
b. Mean diagonal compressive	MPa	varies	$fm\theta = f_I \cdot sin^2\theta$	(2)	[3]	Stiffness Factor, (7/201)				
strength, <u>fm</u> θ						b. Strain Reloading		0.2		[15]
c. Tensile Strength, <u>f</u> f	MPa	0			[15]	Factor, (α_{re})				
d. Bond shear strength, τ_0	MPa	0.3			[15]	c. Strain Inflection Factor,		0.7		[15]
e. Coefficient of friction, μ		0.62			[16]	(α_{rk})				
f Maximum shear stress τ_{max}	MPa	1			[15]	d. Complete Unloading		2		[15]
a the second second, the		0.0010			[15]	Strain Factor, (β_q)				
g. Strain at max stress, (ε_{m})	MPa	0.0012		(2)	[15]	 e. Stress Inflection Factor, 		0.9		[15]
h. Ultimate strain, (ε_{ω})	MPa	0.024	$\varepsilon_{u} = 20. \varepsilon_{m}$	(3)	[15]	(β_{ch})				
i. Closing strain, (ε_{el})	MPa	0.003			[15]	f. Zero Stress Stiffness		1		[15]
 Specific Weight, W 	N/mm ³	1.7E-				Factor (24)		-		
		005				g. Reloading Stiffness		1.1		[15]
						Factor, (Yole)				
						h. Plastic Unloading		3		[15]
						Stiffness Factor, e_{x1}				
						i. Repeated Cycle Strain		1		[15]
						Factor, e_{x2}				
						j. Reduction Shear Factor,	MPa	1.43		[3]
						(α_2)				
						k. Out-of-plane Failure	%	1		[17]
						Drift				
						 Proportion of stiffness 	%	70		[15]
						assigned to shear, γ_s				

Seismic performance analysis

Capacity Curve

Using a non-linear static pushover analysis

Output: Capacity Curve

- a. setting the target displacement of 0.294 m (2% of the height)
- b. the iteration is carried out as much as 98 steps
- c. the lateral load is performed on the weak est axis of the structure (y-axis)
- Maximum lateral load infilled frame = 20. 3x103 kN and open frame = 15.2x103 k
 N
- b. Increase 33%

Seismic performance analysis

Inter-story drift in HAZUS-MH MR5 method

Model Bu	uilding Type	Structural Damage States					
		Slight	Moderate	Extensive	Complete		
	Low-Rise Buil	dings – High	 Code Design 	n Level			
W1, W2		0.004	0.012	0.040	0.100		
S1		0.006	0.012	0.030	0.080		
C1, S2		0.005	0.010	0.030	0.080		
C2		0.004	0.010	0.030	0.080		
\$3, \$4, PC1, P	C2, RM1, RM2	0.004	0.008	0.024	0.070		
	ign Level						
W1, W2		0.004	0.010	0.031	0.075		
S1		0.006	0.010	0.024	0.060		
C1, S2		0.005	0.009	0.023	0.060		
C2		0.004	0.008	0.023	0.060		
S3, S4, PC1, P	C2, RM1, RM2	0.004	0.007	0.019	0.053		
	Low-Rise (LR) B	uildings – Lo	w – Code Des	ign Level			
W1, W2		0.004	0.010	0.031	0.075		
S1		0.006	0.010	0.020	0.050		
C1, S2		0.005	0.008	0.020	0.050		
C2		0.004	0.008	0.020	0.050		
S3, S4, PC1, P	C2, RM1, RM2	0.004	0.006	0.016	0.044		
S5, C3, URM		0.003	0.006	0.015	0.035		
	Low-Rise (LR) H	Buildings – Pr	e – Code Desi	ign Level			
W1, W2		0.003	0.008	0.025	0.060		
S1		0.005	0.008	0.016	0.040		
C1, S2		0.004	0.006	0.016	0.040		
C2		0.003	0.006	0.016	0.040		
S3, S4, PC1, P	C2, RM1, RM2	0.003	0.005	0.013	0.035		
\$5, C3, URM		0.002	0.005	0.012	0.028		
	N	vlid – Rise Bu	ildings				
A11 M	lid-Rise Building	2/3 * LR	2/3 * LR	2/3 * LR	2/3 * LR		
T	ypes						
	H	ligh – Rise Bı	uildings				
A11 M	id-Rise Building	1/2 * LR	1/2 * LR	1/2 * LR	1/2 * LR		
T	ypes						

Seismic performance analysis

Determining the damage states

Inter-story drift in ATC-40 method

Interstory Drift	Perfo	rmance Leve	l (Damage States)			
Limit	IO	DC	LS	SS*		
Maximum total drift	0.01	0.01-0.02	0.02	0.33 $\frac{V_l}{P_l}$		

Maximum base shear by Silva et al

- Limit state 1 (LS1): top displacement at 75% of the maximum base shear capacity is achieved
- Limit state 2 (LS2): top displacement at the maximum base shear capacity is achieved
- Limit state 3(collapse)-(LS3): top displacement when the base shear capacity decreases 20%

Seismic performance analysis

OPEN FRAME (HAZUS-MH MR5)						
Limit State	<u>Sd</u>	βM(ds)	βc	βđ	βds	
Slight	(m) 0.0184	0.4000	0.4672	0.4500	0.4510	
Moderate	0.0164	0.4000	0.4672	0.4500	0.4510	
Entonoine	0.0308	0.4000	0.4072	0.4500	0.4519	
Extensive	0.0920	0.4000	0.4072	0.4500	0.4519	
Complete	0.2146	0.4000	0.4672	0.4500	0.4519	
1	NFILLED	FRAME (E	IAZUS-MH	I MR5)		
Limit State	<u>Sd</u> (m)	βM(ds)	βc	βđ	βds	
Slight	0.0187	0.4000	0.4672	0.4500	0.4519	
Moderate	0.0374	0.4000	0.4672	0.4500	0.4519	
Extensive	0.0935	0.4000	0.4672	0.4500	0.4519	
Complete	0.2183	0.4000	0.4672	0.4500	0.4519	
	OPE	N FRAME	C (ATC 40)			
T : : : 0	Sđ	0	0	0.1	βds	
Limit State	(m)	PM(ds)	рс	pa		
IO	0.0920	0.4000	0.4672	0.4500	0.4519	
LS	0.1840	0.4000	0.4672	0.4500	0.4519	
SS	1.1812	0.4000	0.4672	0.4500	0.4519	
	INFIL	LED FRAM	AE (ATC 4	0)		
L imit State	Sđ	Barres	ße	Bđ	Ba.	
Linit State	(m)	pm(as)	pc	pu	pds	
IO	0.0935	0.4000	0.4672	0.4500	0.4519	
LS	0.1871	0.4000	0.4672	0.4500	0.4519	
SS	1.6072	0.4000	0.4672	0.4500	0.4519	

Establishing the fragility curve

Determining the standard deviation of the total uncertainty (β_{ds}) i.e. the uncertainty of structural capacity (β_C), spectrum demand (β_d) & damage limit value of the structure ($\beta_{M(ds)}$).

Equation:

$$\beta_{c} = \sqrt{\ln(\frac{s^{2}}{m^{2}} + 1)} \quad ; \quad (\beta_{ds}) = \sqrt{\left[(\text{CONV}[\beta_{c'}\beta_{d}])\right]^{2} + \left[\beta_{M(ds)}\right]^{2}}$$
$$\mathsf{P}\left(ds|S_{a} \text{ or } Sd\right) = \Phi\left(\frac{1}{\beta_{ds}}\right) \ln\left(\frac{Sa \text{ or } Sd}{Sa.ds \text{ or } Sd.ds}\right)$$

OPEN FRAME (Silva's Method)									
Limit State	Sđ	Barras	ßa	6.4	Ba.				
Linit State	(m)	PIM(05)	pc	μu	Pas				
LS1	0.0217	0.4000	0.4672	0.4500	0.4519				
LS2	0.0526	0.4000	0.4672	0.4500	0.4519				
LS3	0.1188	0.4000	0.4672	0.4500	0.4519				
I	INFILLED FRAME (Silva's Method)								
T insit State	Sđ				B				
	53	Barras	ßa	6.4	B.				
Limit State	(m)	$\beta \mathrm{M}(\mathrm{ds})$	βc	βđ	βds				
Linni State	(m) 0.0270	βM(ds) 0.4000	βc 0.4672	βd 0.4500	β _{ds} 0.4519				
Limit State	(m) 0.0270 0.1158	β _{M(ds)} 0.4000 0.4000	βc 0.4672 0.4672	βd 0.4500 0.4500	βds 0.4519 0.4519				

The fragility curve

Research Conclusion

- a. The capacity curve of the masonry infilled frame structure is increase 33% compared to the open frame structure
- b. The Silva's method capable to demonstrate the reduction of the probability of the masonry infilled wall structure to reach certain damage states for a given seismic intensity as compared to the open frame structure, because only this method specifies the damage states based on the magnitude of base shear while the other methods are based on the inter-story drift
- c. From the fragility curve, the probability of the masonry infilled frame to reach a certain damage state is lower than that of the open frame. The results confirm the beneficial effect of the masonry infilled wall to increase the seismic resistance of the building

Thank you

