Application of High Strength Reinforcing Bars in Earthquake-Resistant Structure Elements

Author:

Kurniawan Setiadi, Iswandi Imran, Maulana Derry, Muhammad Riyansyah, Aris Ariyanto ICRMCE 4 Solo, 12 July 2018

Introduction

conventional 400 MPa

cost-effective 500 MPa

VS

POSITIVE

Reduce amount of Reinforcing Steel Bars
Saves material, delivery, placement cost
Eliminate reinforcing bars congestion

Higher DEMAND for Shear & Bond Stress

How bad is it?

Objective:

Study the use of high strength reinforcement steel bars by comparing the post-elastic behavior beetwen reinfoced concrete (R/C) with conventional reinforcing steel bar and R/C with high strength reinforcing steel bars

Mechanical Properties

All Specimens

Material					
	Sectional Area (mm ²)	Yield Str. (MPa)	Tensile Str. (MPa)	Young Modulus (Gpa)	Compressive Str. (MPa)
D16-400N	201.06	434.1	577.4	198.1	31.0
D16-500N	201.06	485.2	630.9	207.9	32.7
D19-500N	283.53	503.9	674.9	195.7	31.7

Loading Protocol

According to ACI 374.2

Experimental Results

1140 016

Analysis 1: Hysteretic Curve & Backbone Curve

---- Yield (Analitis)

---- Spalling (Analitis)

- Yield SG
- Spalling
- First Crack

Hysteretic Curve Normal Strength

---- Yield (Analitis)

---- Spalling (Analitis)

- Yield SG
- Spalling
- First Crack

Hysteretic Curve

High Strength

Analysis 2: Energy Dissipation

Displacement Ratio

Analysis 3: **Deformability**

Deformability According to ASCE 7.10

Specimen	δ _{limit} (mm)	δ _{ultimit} (mm)	Deformability	Remark
D16-400N	16.689	83.045	4.976	High
D16-500N	28.361	133.828	4.719	High
D19-500N	29.989	104.157	3.473	Limited

Analysis 4: **Stiffness**

Stiffness (Peak-to-Peak, Normalized by Initial Stiffness)

Conclusions

Conclusions

- 1. Normalized energy dissipation for all specimens is relatively the same, but specimens with high strength reinforcing bars have smaller displacement ratio than that of specimens with normal strengh reinforcing bars
- 2. Specimens with high strength reinforcing bars tend to have smaller deformability than that of specimen with normal strength reinforcing bars.
- 3. Specimens with high strength reinforcing bars tend to have smaller stiffness degradation than normal strength reinforcing bars.
- 4. High strength reinforcing bars can be used as alternative for earthquake-resistant building

Application of High Strength Reinforcing Bars in Earthquake-Resistant Structure Elements

THANK YOU

ICRMCE 4 Solo, 12 July 2018