4 CRMCE () International Conference on Rehabilitation and Maintenance in Civil Engineering Solo, Indonesia, 11 - 12 July 2018

1011111

Data Mining Applied for National Road Maintenance Decision Support System

Andri IRFAN – Directorate General Highway Susanty Handayani – Greater Jakarta Transporation Authorithy Ronald Al Rasyid – Jasa Marga Toll Road Company

Solo, 11 Juli 2018

Contents

Introduction

Methodology

Data Mining

Pavement Maintenance Optimization

DSS - Concept

Conclusion

Reference

Background

Relevance of Sustainable Road Assets Maintenance

- Improvement of the roads service level
- Minimization of administration and user costs
- Reduction of environmental impacts; less resources consumption; less energy)
- Improvement of peoples' quality of life (peoples' health)

An integrated approach of plan, design, construction and maintenance of all road assets: essential to achieve main objectives.

Baasic

- Function
- Non Geometric

Intermediate

- Function
- Structural

Advance

- Safety
- Comfort
- Smart
- Sustainability

Background

Infrastructures Maintenance Optimization

Smart and Sustainable Mobility

Smart and Sustainable Cities

*) source : Pereira-CTAC

Background

Concept

Pavement Management Systems (PMS)

Main Components

- Geographical Information System
- Database
- Performance prediction models
- Decision support system

Project level

- Detailed engineering decisions
- Immediate consequences

Differences among PMSs

- Objectives
- Performance indicators
- Approach to the problem
- Mathematical Formulation

6

*) source : Pereira-CTAC

Problem Statement

How to develop decision support system for pavement maintenance optimization?

Objective

Develop DSS pavement maintenance optimization concept based on GIS

Literature Map

Frame Work

Flow Chart

Method

Decision Support System-Optimization

Objective: generate several possible decision scenarios with the corresponding information that may help and support the decision maker choices

Mathematical programing

- Linear
- Non-linear
- Geometric
- Integer
- Dynamic
- Stochastic

Qualitative Methods

- Analytic Hierarchy Process
- Fuzzy set theory
- Decision-trees

Evolutionary Algorithms

- Genetic algorithms
- Artificial neural networks
- Pattern search

Tools of Research

Objection	Model	Tools
Predict the IRI & Pavement Distress	Artificial Intelligence & Data Mining	R-Miner from R Tool
Optimization Pavement Maintenance	Genetic Algorithm	R-GA from R Tool
DSS-Concept	Spatial Decision Model	QGis Lisboa 1.8.0 From Quantum GIS

Data Source

REC & VEC Curve

Model	Hyper-parameters	Time (s)
MR	-	3.21 ± 0.03
SVM	ϵ = 0.07 \pm 0.01 and γ = 0.05 \pm 0.00	117.02 ± 0.67
ANN	$H = 3 \pm 1$	102.37 ± 0.16

Sensitive Analysis

Case Study

Post Optimization

Map Concept

The five basic map layers below are used in the GIS module

ANALYSIS RESULTS	 detailed project-level results project ratings treatment methods and costs, AADT, and spatial location information (such as SegmentNo, NetworkNo, ProvinceNo, Sta. From and Sta. To, District)
STATEROUTE	Based on IIRMS concept (the complete information on state highway routes in Java Island)
DISTRICT	The detailed district information of Java Island
PROVINCE	IIRMS Province boundary information
NETWORK	Network boundary information

AddRelate Concept

The AddRelate method uses this common field to create a join between the map layer and the results table and creates a new record-set, which contains all the records (6 java island province)

GIS Base-Map

These five basic map layers include most of the information generated from the maintenance model results that can be displayed on GIS maps

Interface-Interactive

Interactive Map-based Multi-year What-if Pavement Scenario Analysis

Year n

Year n+2

Main Result

DM techniques, particularly and Artificial Neural Network (ANN) and Support Vector Machine (SVM) algorithms, proved to be powerful tools for explore pavement deterioration model. Indeed, these tools were able to learn with high accuracy the complex relationships between IRI and their contributing factors. SVM achieved a performance higher than 0.91, using R² as a performance indicator.

The Genetic Algorithm Approach method, by taking advantages mathematical programming, offers a systematic, easy-to-use approach to the pavement maintenance optimization. Although only budget constraint is considered, other constraints could be easily added to the formulation.

GIS technology is fully utilized in the decision support system for pavement maintenance. The GIS technology integrates graphical information in the GIS maps and the pavement performance model results obtained from the segment-level and the network-level seamlessly

Thank You

Obrigado