

Study of Inertia Weight Parameter for Boundary Element Inverse Analysis to Detect RC Corrosion

Syarizal Fonna, Syifaul Huzni

Program Studi Teknik Mesin, Universitas Syiah Kuala, Jl. Tgk. Syech Abdul Rauf No. 7, Darussalam, Banda Aceh 23111

Gunawarman

Jurusan Teknik Mesin, Universitas Andalas, Kampus Limau Manis, Padang 25163

Corrosion of rebar

The failures of RC structures due to corrosion

The collapse of the Algo Centre Mall's roof, Canada, 2013 (www.northernontariobusiness.com)

Jakarta, 25 September 2011 (http://megapolitan.kompas.com)

Direct Corrosion Monitoring

- Potential Mapping
- Concrete Resistivity

Kampung. Jawa, Banda Aceh

Parsopoulos and Vrahatis (2010) suggested to use inconstant W for better result

The purpose of this study: To investigate the effect of inconstant W (with $W_{up} = 0.5$ and $W_{low} \le 0.5$) on the performance of BEIA in detecting rebar corrosion in concrete

Modeling of Corrosion Problems

Laplace's Equation

$$\nabla^2 \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0 \quad \text{In } \Omega$$

BEM: Solving the Laplace's Eq. **Obtain:** ϕ and *i* in the whole Ω

WHY PSO ???

S. Fonna et. al. 2013

- Simple algorithm
- Comparable accuracy

Particle Swarm Optimization

- □ Introduced by kennedy and eberhart in 1995
- □ Population-based search algorithm
- □ Inspired by flocking behavior of birds

	Input:	Number of particle (Z), Swarm (S), best position (P)
	Step1.	Set $j \leftarrow 1$
	Step 2.	Initialize S and Set $P\equiv S$ Calculate W using Eq. c
Peudocode of PSO	Step 3.	Evaluate S and P , and define index g of the best position
	Step 4.	While (termination criterion not met)
	Step 5.	Update S using Eq. a and b
	Step 6.	Evaluate S
	Step 7.	Update P and redefine index g
	Step 8.	Set $j \leftarrow j+1$
	Step 9.	End While
	Step 10.	Print best position found

$$\begin{aligned} X_{j+1} &= X_j + V_{j+1} & \text{(a)} \\ V_{j+1} &= W_j V_j + a_1 r_1 (pbest - X_j) + a_2 r_2 (gbest - X_j) & \text{(b)} \\ W_j &= W_{up} - \left[(W_{up} - W_{low}) \frac{j}{j_{max}} \right] & \text{(c)} \end{aligned}$$

Boundary Element Inverse Analysis

Minimize cost function:

Numerical Simulation Setup, Results and Discussion

Simulation No. 2

The movement of particles and value of *W* during iteration for $W_{up} = 0.5$ and $W_{low} = 0.2$

Simulation No. 3

The movement of particles and value of *W* during iteration for $W_{up} = 0.5$ and $W_{low} = 0.01$

Resume of all simulation

Gradient of W during iteration (Wup = 0.5 and Wlow ≤ 0.5)

The error in detecting actual corrosion for $W_{up} = 0.5$ and $W_{low} \le 0.5$

Conclusions

- The effect of inconstant W on BEIA when detecting rebar corrosion in concrete was explored
- the inconstant *W* with $W_{up} = 0.5$ and $W_{low} \le 0.5$ did not influence the performance of the BEIA in detecting rebar corrosion
- The error with respect to the actual location of corrosion (inconstant W with $W_{up} = 0.5$ and $W_{low} \le 0.5$) was less than 5%

Further study:

important to conduct further research to study the effect of $W_{up} > 0.5$ for inconstant W

THANK YOU