4th International Conference on Rehabilitation and Maintenance in Civil Engineering July 11th-12th, 2018, Solo Baru, Indonesia

Microstructure and Mechanical Properties of FA/GGBS-based Geopolymer

HIROSHIMA UNIVERSITY

Apriany SALUDUNG, Yuko OGAWA, Kenji KAWAI

Department of Civil and Environmental Engineering Graduate School of Engineering Hiroshima University

2018

Background

Cement industry emits high amount of carbon dioxide (CO₂) that accounts for about 5% of global CO₂ emission.

Develop alternative material (E.g. Geopolymer concrete)

Geopolymer cements can be obtained through inexpensive and eco-friendly synthetic procedures.

Background

HIROSHIMA UNIVERSITY

To investigate effect of GGBS on the microstructure and mechanical properties of fly ashbased geopolymer.

Theory and Application

The term 'geopolymer' was coined in the 1970s by the French scientist and engineer Prof. Joseph Davidovits, and applied to a class of solid materials synthesized by the reaction of an aluminosilicate powder with an alkaline solution.

$$n(Si_{2}O_{5},Al_{2}O_{2}) + 2nSiO_{2} + 4nH_{2}O \xrightarrow{\text{NaOH,KOH}} n(OH)_{3}-Si-O-Al-O-Si-(OH)_{3} \quad (Geopolymer precursor)$$

$$(OH)_{2}$$

$$n(OH)_{3}-Si-O-Al-O-Si-(OH)_{3} \xrightarrow{\text{NaOH,KOH}} (Na,K)-(-Si-O-Al-O-Si-O-) + 4nH_{2}O \quad (Geopolymer backbone)$$

$$(OH)_{2} \xrightarrow{\text{O}} O \xrightarrow{\text{O}} O$$

Brisbane West Wellcamp Airport, Queensland, Australia is the world's largest geopolymer concrete project.

HIROSHIMA UNIVERSITY

Experimental Method (1)

Materials

1. Precursors:

- Fly ash (fineness : 3.550 cm/g², density
 : 2.24 g/cm³)
- GGBS (fineness : 4.170 cm/g², density : 2.91 g/cm³)

2. Alkaline liquids

Combination of sodium hydroxide (NaOH) 14 M and sodium silicate (Na₂SiO₃). **Table 1**. Chemical compositions of raw materials by EDS analysis.

Composition	Fly ash (mass%)	GGBS (mass%)
SiO ₂	68.44	34.45
Al ₂ O ₃	20.65	14.06
Fe ₂ O ₃	4.18	0.27
CaO	2.25	43.78
K ₂ O	1.53	0.23
TiO ₂	1.19	0.56
MgO	0.58	5.84
Na ₂ O	-	0.24
LOI	2.9	0.05

Experimental Method (2)

GGBS/FA : 0.15, 0.30, 0.45, 0.60 (By mass) Solution/Binder : 0.45 (By mass) Na₂SiO₃/NaOH : 2 (By mass)

Fresh Geopolymer paste

Characterization and measurement

Demould and kept in controlled room (20°C and 60% RH) for 7, 14, and 28 days Casted in cylindrical plastic mold (50mmx100mm) and cured at 70°C for 24 hours

Results and Discussion

Compressive strength test
 Scanning Electron Microscopy (SEM)
 X-Ray Diffraction (XRD)

Thermo-gravimetric analysis

Compressive strength

■ 7 days ■ 14 days ■ 28 days

Table 2. Compressive strength of geopolymer paste specimens.

* () = Standard deviation

Fig.1. Effect of GGBS on the compressive strength of geopolymer paste specimens.

The compressive strength was found to increase with the increase in amount of GGBS; however, it remained almost constant between 7 and 28 days.

SEM Images

HIROSHIMA UNIVERSITY

Fig. 2. Micrograph of geopolymer specimens with (a) 0%, (b) 15%, (c) 30%, (d) 45%, (e) 60% of replacement by GGBS.

XRD Results

Fig.3. XRD patterns of geopolymer specimens

XRD Results

M : Mullite, Q : Quartz C-S-H Q MQ \mathbf{M} QMQ C-S-H **60% GGBS 45% GGBS** C-S-H **30% GGBS** C-S-H **15% GGBS** 0% GGBS mon Raw FA 10 20 30 40 50 60 2-Theta

As GGBS was presented in the mixes, the formation of C-S-H gel was generated.

The increase amount of GGBS resulting in the increase of C-S-H peak indicates that the higher the amount of GGBS, the higher the formation of C-S-H.

Fig.3. XRD patterns of geopolymer specimens

Thermo-gravimetric analysis

- A sharp decrease in mass before 200°C was due to the evaporation of free water.
- Above 200°C, the mass loss is attributed to dehydroxylation of chemically bound water.

Fig.4. Thermal stability of geopolymer paste under different dosage of GGBS

Thermo-gravimetric analysis

Mass (%)

→ 45% GGBS

 Above 200°C, the mass loss is attributed to dehydroxylation of chemically bound water.

60% replacement by GGBS may cause durability problem when using it in the field.

Fig.4. Thermal stability of geopolymer paste under different dosage of GGBS

Temperature (°C)

Conclusions

- 1. The addition of GGBS in the mixes significantly increased the compressive strength of geopolymer paste specimens. The highest strength was found at 60% of replacement of fly ash by GGBS.
- 2. The SEM micrographs show that in the specimens containing GGBS, the geopolymeric gels were found to be co-existed with calcium silicate hydrate (C-S-H) gels, and thus contributed to the strength development of geopolymer specimens.
- 3. This study revealed that the geopolymer cement made from fly ash and GGBS has a potential use as an alternative binder to replace Portland cement due to high compressive strength and good thermal stability. However, using too high amount of GGBS (over 45%) may cause durability problem at high temperature due to the C-S-H decomposition.

References

- 1. F. Fan, Z. Liu, G. Xu, H. Peng, C. Cai, Cons. & Buil. Mat., **160**, 66-81 (2018)
- 2. M. Kaur, J. Singh and M. Kaur, Cer. Int., 44, 1534-1537 (2018)
- 3. F. N. Okoye, Mat. Today : Proc., 4, 5599-5604 (2017)
- 4. L. Yun Ming, H. Chen Yong, M. M. Al Bakri, K. Hussin, Prog. in Mat. Sci., 83, 595-629, (2016)
- 5. A. Autef, E. Joussein, G. Gasgnier, S. Rossignol, J. of Non-Crystalline Solids, 366, 13-21, (2013)
- 6. Z. Li, S. Li, Cons. & Buil. Mat., 163, 668-680, (2018)
- 7. P. Nath, P. Sarker, Proc. Eng, 14, 1149-1156 (2011)
- 8. A. K. Saha, Sus. Env. Res., 28, 25-31, (2018)
- 9. R. A. Hawileh, J. A. Abdalla, F. Fardmanesh, P. Shahsana, A. Khalili, Arc. of Civ. & Mec. Eng., 17, 511-519 (2017)
- 10. S. Saha, C. Rajasekaran, Cons. & Buil. Mat, **146**, 615-620 (2017)
- 11. C. D. Budh and N. R. Warhade, Int. J. of Civ. Eng. Res, 5, 83-86 (2014)
- 12. J. L. Provis, J. S. J. van Deventer, *Geopolymers : Structure, processing, properties, and industrial application,* Woodhead Publishing Limited (2009)
- 13. P. Behera, V. Baheti, J. Militky, S. Naeem, Cons. & Buil. Mat., 160, 733-743 (2018)

Thank you for your attention